A Reinvestigation of the Preparation of Tungsten Oxide Hydrate WO₃, 1/3H₂O

J. Pfeifer,¹ Cao Guifang,² P. Tekula-Buxbaum, B. A. Kiss, M. Farkas-Jahnke, and K. Vadasdi

Research Institute for Technical Physics of the Hungarian Academy of Sciences, H-1047 Budapest, Fóti út 56, P.O.B. 76, H-1325 Budapest, Hungary

Received December 30, 1994; in revised form April 3, 1995; accepted April 5, 1995

A reinvestigation of the synthesis procedures of WO_3 , $1/3H_2O$ via the preparation and dehydration of H₂WO₄, H₂O has been carried out in order to check the stoichiometry of WO3, 1/3H2O, the parent material of the important hexagonal WO₃. The formation of WO₃, 1/3H₂O during dehydration reaction of H₂WO₄, H₂O via the solution was observed to require the presence of sodium in the reaction system, resulting in sodium incorporation in the WO₃, $1/3H_2O$ phase. The minimal level of sodium in the WO₃, $1/3H_2O$ phase was found to be 160 ppm; sodium levels up to 1000-3000 ppm were also found to be incorporated in the WO₃, 1/3H₂O structures. A shift in the c parameter of the WO₃, $1/3H_2O$ cell has been found to be connected with the change in the concentration of incorporated sodium. The average size of the octagonal platelets of WO3, 1/3H2O was found to be connected with the sodium concentration in the solid phase. A modification in infrared absorption spectra has been observed. © 1995 Academic Press, Inc.

INTRODUCTION

In recent years several works have been published on a metastable form of tungsten trioxide with a hexagonal structure (1-7). References (1, 2, 4, 6, and 7) consider the same hexagonal WO₃ matrix with a WO₃ stoichiometric composition. The open hexagonal WO₃ is the starting material for certain applications (2, 7, 8) and its structure is the basis of computer simulation studies for better understanding the hexagonal tungsten bronze structures (9). The proposed preparation route of h-WO₃ (1) consists of two steps. In the first step tungsten oxide hydrate, WO₃, 1/3H₂O, is prepared from sodium tungstate, Na₂WO₄. In the second step h-WO₃ is prepared by dehydration of the precursor hydrate WO_3 , $1/3H_2O$. The first step, the preparation of WO_3 , $1/3H_2O(4)$, begins with the precipitation of tungstic acid gel (H2WO4, H2O) from acidified Na₂WO₄ solution. After a successive washing procedure the precipitate, H_2WO_4 , H_2O_5 , is put into an autoclave and during a hydrothermal process a partial dehydration of H_2WO_4 , H_2O results in WO_3 , $1/3H_2O$. The structural filiation between the precursor WO₃, 1/3H₂O and hexagonal WO₃ gives importance to the synthesis procedures (involving the elimination of sodium) and the resulting structure of tungsten oxide hydrates H₂WO₄, H₂O and WO_3 , $1/3H_2O$. The structure of WO_3 , $1/3H_2O$ was determined by the X-ray powder diffraction method (4). Problems concerning the state and location of water in the mean WO₃, 1/3H₂O structure have already been revealed in Refs. (4 and 10). This study is concerned with the method of preparation and the crystallographic and morphological characteristics of WO₃, 1/3H₂O as regards residual or deliberately added sodium. The necessity of a more elaborate model of WO₃, 1/3H₂O, which has the same WO₃, 1/3H₂O matrix but takes into account the presence of residual sodium, is pointed out in this paper.

EXPERIMENTAL DETAILS

Preparation of Tungstic Acid Samples

Tungstic acid samples were prepared according to Zocher's method (11), which was also employed in Ref. (4), for the preparation of WO₃, $1/3H_2O$.

Ten and a half grams of Na₂WO₄, 2H₂O of analytical grade (from Reanal, Hungary) was dissolved in 150 ml of water and the solution was cooled to 5°C. To this, 75 ml of normal hydrochloric acid solution (analytical grade, 18% in excess of equimolar reaction) cooled to the same temperature was added in several doses (to keep reaction temperature not higher than 5°C). The mixture was stirred for 1.5 hr in an ice bath and for 0.5 hr at room temperature. After leaving it for about 5 min, then centrifuging (5000 r.p.m., 3 min), the supernatant liquid was removed. Then 600 ml of water was added to the precipitate and the suspension was stirred 10 to 15 min in order to ensure the thorough assimilation of the gel. The steps of centrifuging, removing the supernatant liquid, and adding 600 ml of

¹ To whom correspondence should be addressed.

² Permanent address: Central South University of Technology, Changsha, Hunan, P. R. China.

new water were repeated three to seven times. Intervals between washing steps ranged from 1 to 20 hr. At the end of the washing the pH value of the supernatant liquid varied between 3 and 4.5, corresponding to the number of washing steps. Throughout the experiments properly cleaned polythene or Teflon laboratory vessels and tools and deionized water (2 μ S cm⁻¹) of a <0.1-0.2 ppm sodium level were used.

Dehydration of H_2WO_4 , H_2O

The dehydration of H_2WO_4 , H_2O was done according to Ref. (4). After the last centrifuging the precipitates were dispersed in 1000 ml of water and the suspensions were heated for 20 hr at 120°C in a stirred (200 r.p.m.) autoclave (Parr Instruments, Model 4552), under an atmosphere of 80% nitrogen +20% oxygen; the pressure before heating was 10 bar.

Samples were also prepared by deliberate Na addition. Several portions of precipitates washed seven times were homogenized and then distributed into parts. One of the portions was treated as described above. To the other samples various amounts of Na_2WO_4 , $2H_2O$ were added before they were put into the autoclave for a similar treatment.

Determination of Sodium Content

Sodium content was determined in the dehydrated samples from the autoclave, in the precursor tungstic acid precipitates, and in the rinsing waters (removed supernatant liquids) throughout the washing process. Atomic absorption spectrophotometry (Perkin-Elmer 5000 Atomic Absorption Spectrophotometer, flame technique) was chosen as a suitable method for direct determination of small amounts of sodium in the presence of tungsten (12). The reagents used were of Suprapur grade from Merck with low residual sodium content: hydrochloric acid (30% HCl), max. 0.5 ppm; hydrogen peroxide $(30\% H_2O_2)$, max. 0.1 ppm; ammonia solution (25% NH₄OH), max. 0.05 ppm; potassium hydroxide (KOH, H₂O), max. 5 ppm; and caesium chloride (CsCl), max. 5 ppm. The range of the atomic absorption measurements was 0.1 to 1.5 μg sodium/ml, achieved by suitable weighing in and/or using a multiple-stage dilution technique; the error of the determination varied between 5 and 10%.

The procedures of the chemical analysis were as follows. Test solutions of rinsing waters were prepared by adding diluted HCl and H_2O_2 (for keeping the tungstic acid in solution) and CsCl solution (as Cs ionization buffer) and were diluted to a suitable volume. Precipitates, freshly prepared and dried at room temperature, were generally dissolved in ammonia solution and their test solutions were prepared using Cs ionization buffer. Crystalline samples after the treatment in the autoclave cannot be dissolved in ammonia solution. These samples were fused with KOH in a silver dish and then dissolved with water, producing test solutions with K as ionization buffer. Test solutions from freshly precipitated samples were also made by fusing with KOH for comparison.

Characterization

X-ray powder patterns were recorded at room temperature in a Guinier focusing camera using $CuK\alpha$ radiation $(\lambda = 0.154051 \text{ nm})$. The positions of the lines on the film were determined either visually or by computer-controlled densitometric analysis (13). Lattice parameters were obtained from the least-squares refinement of the dvalues of 23–26 reflections in the range $13^{\circ} < 2\Theta < 30^{\circ}$. For the determination of the total water contained in the samples, thermogravimetric analysis (Mettler, Registrierender Vakuum-Thermoanalyzer) was applied. Dehydration of WO₃, 1/3H₂O under a nitrogen-oxygen (80-20%) atmosphere by an isotherm treatment at about 300°C was carried out, to check the structure of the obtained WO_3 . Infrared absorption spectra were taken by SPECORD 75 IR equipment in the range 400-4000 cm^{-1} , and by a Perkin-Elmer 783 IR spectrophotometer in the range $250-500 \text{ cm}^{-1}$: 2 mg sample/1 g KBr pellets was used. Crystallite habit and grain size distribution were studied by scanning electron microscopy with a JEOL 25 microscope using homemade software for the processing of micrographs.

RESULTS

Guinier patterns of the precipitate from acidified Na₂WO₄ solutions showed the identity of the product with crystalline tungstic acid, H₂WO₄, H₂O, compared and checked with the Joint Committee on Powder Diffraction Standards 1986 powder patterns, JCPDS 18–420. The product (Fig. 1) consists of thin cracked platelets ($\approx 5 \times 2 \times 0.2 \ \mu$ m). On thermal dehydration the product loses 1 mole of water below 210°C and a second mole of water in a separate step below 325°C.

The sodium contents of the precipitates and the separated supernatant liquids from one preparation procedure are plotted in Fig. 2 versus the sequences of washing steps. The sodium content of the washed precipitate saturates at a level of 20–30 ppm after the seventh washing and centrifuging step, while the sodium content of the supernatant liquid decreases to 0.1 ppm, which is the level of sodium background for the used deionized water. Reproducibility limits and a comparison between Na analytical results using either NH₄OH or KOH for dissolution of the precipitate are demonstrated in Fig. 3, where sodium contents of the precipitates are plotted against the number of washing steps. The values of the sodium concentrations measured by using NH₄OH and KOH for dis-

Na content in precipitate, ppm

10

10

10 L

FIG. 1. Scanning electron micrograph of precipitated tungstic acid, H_2WO_4 , H_2O (JCPDF 18-420).

solution are close to each other and their behavior as the washing steps advanced is similar. Seven washing steps are needed to minimize the sodium concentration in H_2WO_4 , H_2O at a level of 20 to 40 ppm.

The dehydration of H_2WO_4 , H_2O with various residual or deliberately added sodium concentration in autoclave at 120°C resulted in the following. The products of the

10

10

10

1

10

10

Va content, ppm

103,2H20 precipitate

FIG. 2. Observed change in the sodium content in H_2WO_4 , H_2O precipitate and in the rinsing liquid throughout the washing process (I.run). The sodium content of the washed precipitate saturates at a level of 20–30 ppm after the seventh washing and centrifuging step, while the sodium content of the supernatant liquid decreases to 0.1 ppm, which is the level of the sodium background of the used deionized water.

4

2 3

5

Number of washings

6 7

8 9 10

Supernatant

liquid

2 3 4

5 6

Number of washings

8

q

10

00000 NH₄OH, I.run ▲▲▲▲▲ NH₄OH, II.run △△△△△ KOH, II. run □□□□□ NH₄OH

•• KOH

dehydration consisted of either WO₃, 1/3H₂O, JCPDS 35-270 or WO₃, H₂O, JCPDS 18-1418 crystals, or of a mixture of these two phases. WO₃, 1/3H₂O crystals formed in this autoclave process were all found to contain a minimum level (\cong 160 ppm) or above of sodium in the solid crystalline phase. If the obtained solid product contained sodium at a level as low as \cong 40 ppm, instead of WO₃, 1/3H₂O, the WO₃, H₂O phase crystallized in the same dehydration-crystallization process. An intermediate range of sodium concentration, with mixed growth of WO₃, 1/3H₂O and WO₃, H₂O phases, was also observed. Sodium concentration, color, structural characteristics, infrared transmittance peaks, and water loss at thermogravimetric measurements of the partially dehydrated samples from the autoclave are summarized in Table 1.

From the point of view of Na content of the solid phase, three ranges can be distinguished: Range I, no existence of WO₃, 1/3H₂O, growth of WO₃, H₂O; Range II, mixed crystallite growth of WO₃, $1/3H_2O$ and WO₃, H_2O ; and Range III, growth of WO₃, 1/3H₂O. Lattice parameters of the orthorhombic WO₃, 1/3H₂O phases have been determined and are shown vs the Na content in Fig. 4. In the range of existence the lattice parameters a and b do not change, while parameter c seems to have a tendency to increase slightly. The shift of the 004 reflection with increasing sodium concentration compared to the 400 and 260 reflections is demonstrated in Fig. 5. In a sample of WO_3 , $1/3H_2O$ with extremely high sodium concentration (3420 ppm) a splitting of the 400 diffraction peak (and of some other peaks, not shown in this figure) has been found.

TABLE 1Summary of the Samples Prepared from H2WO4,H2O

Sample	[Na] ppm	Color	Structure	H ₂ O equivalents per WO ₃ groups (TG)	Infrared absorption wavenumber (cm ⁻¹) assignation					
					δ _{W-0} (WO ₆)	ν _{W-O-W} (WO ₆)	ν _{W-0} (WO ₆)	δ _{OH} (H ₂ O, OH)	νOH (H ₂ O)	ν _{OH} (W-OH)*
A13b/1	24	Yellow	WO ₃ , H ₂ O	0.70					·	
A5	41	Yellow	WO ₃ , H ₂ O	0.79	275 370	640	925 1070 1390	1610	3365	
A3	46	Yellow	WO ₃ , H ₂ O WO ₃ , 1/3H ₂ O	0.63	285 370	650 800	925 1105	1610	3370	
A10	54	Yellow	WO ₃ , H ₂ O WO ₃ , 1/3H ₂ O	0.72	280 365 410	655 720 805	945	1606	3400	
A2	163	White	WO ₃ , 1/3H ₂ O	0.32	280 360 420	665 730 810	953 995	1604	3400	3480
A9	204	White	WO ₃ , 1/3H ₂ O	0.30	285 360 418	670 735 835	950 990	1602	3400	2480
A1	455	White	WO ₃ , 1/3H ₂ O	0.36	290 360	680 740	950 995	1601		3495
A4	495	White	$WO_3, 1/3H_2O$	0.40	422 290 362	680 765	965 1010	1601		3495
A14	605	White	WO ₃ , 1/3H ₂ O	0.43	424 290 363	820 680 780	955 1000	1601		3495
A6	740	White	WO ₃ , 1/3H ₂ O	0.39	426 290 363	820 670 770	950 995	1601		3495
A15	1053	White	WO ₃ . 1/3H ₂ O	0.43	425 280 362	820 675 745 820	950 995	1602		3497
A13b/2	3420	White	WO ₃ , 1/3H ₂ O	0.43	422 280 364 422	675 730 825	955 1000	1605		3498

Note. Samples prepared in autoclave at 120°C, 10 bar of $N_2 + O_2$ (80:20); stirring, 200 rpm, according to Ref. (4). The concentration of Na is determined by atomic absorption spectroscopy, the crystallographic structure by Guinier patterns, and the number of total H₂O equivalents per WO₃ groups contained in the samples from thermogravimetric measurements; for assignation of the infrared absorption bands see Refs. (15, 16, 17). A13b, two preparations of H₂WO₄, H₂O gels washed seven times were collected, homogenized, and parted into Samples A13b/1 and A13b/2. Before the sample was put into the autoclave, Na₂WO₄, 2H₂O was added (172 mg/2.33 g) to the H₂WO₄, H₂O gel of Sample A13b/2. WO₃, H₂O, JCPDS 18-1418; WO₃, 1/3H₂O, JCPDS 35-270; W-OH^{*}, attributed to the OH stretching vibration of W-OH … H₂O groups (17).

The crystal morphology of WO₃, $1/3H_2O$ crystallites is shown in Fig. 6. The octagonal platelets obtained from crystalline H₂WO₄, H₂O are similar to those reported in Ref. (4) and shown in Ref. (6). However, in Ref. (4) Furusawa's (14) and not Zocher's method was used for obtaining octagonal platelets of WO₃, $1/3H_2O$. The average linear dimension of the WO₃, $1/3H_2O$ crystallites was found to be dependent upon the sodium concentration detected in the solid phase (Fig. 7). Infrared spectra of the products from the autoclave are shown in Figs. 8–10. The peaks of the ν (W–O–W) triplet (640–955 cm⁻¹), assigned to stretching vibration change with sodium concentration from the low concentration range to 160 ppm, scarcely change with higher concentrations (Fig. 8.), confirming the results of the X-ray investigations. The tendency of the changes of the deformation vibration peaks at lower frequencies (Fig. 9) is similar. The broad peak at about 1600 cm⁻¹ (Fig. 8) assigned to

FIG. 4. Lattice parameters of the orthorhombic WO₃, $1/3H_2O$, JCPDS 35-270 samples containing various amounts of sodium. Ranges of the sodium content: Range I, [Na] < 46 ppm, no growth of WO₃, $1/3H_2O$; Range II, 46 < [Na] < 160 ppm, mixed growth of WO₃, H_2O , JCPDF 18-1418 and WO₃, $1/3H_2O$; Range III, [Na] > 160 ppm, growth of WO₃, $1/3H_2O$. a*, b*, and c* are lattice parameters from Ref. (4).

 $\delta(OH)/H_2O/$ changes to a sharp peak of absorption at 160 ppm of sodium concentration that is associated with OH groups in W–OH. This change is connected with a decrease in the absorption wavenumber (Table 1). The $\nu(OH)/H_2O/$ transmittance plots are shown in Fig. 10. The broad band characteristic of OH groups associated with crystal water becomes narrower and shifts to higher frequencies with increasing sodium concentration. At 160 ppm of Na and at a wavenumber of 3480 cm⁻¹, $\nu(OH)$ of the OH group, associated with the W–OH \cdots H₂O bonds (17) characteristic of WO₃, 1/3H₂O (4), dominates. The

FIG. 5. X-ray powder diffraction patterns (densitometric analysis of the Guinier patterns) of WO₃, $1/3H_2O$ samples containing: a, 163; b, 1053; and c, 3420 ppm of sodium. The 400 and 260 reflections do not shift, while the 004 reflection shifts to the direction of the higher *d* lines. At the level of 3420 ppm sodium a split of the 400 reflection can be observed.

frequency of the ν (OH) peak continues to increase very slowly with sodium concentration (Table 1), while the peak itself changes remarkably, having a maximum at a sodium concentration of 740 ppm. From these spectra, we would say that spectrum d of Fig. 10, with [Na] = 163 ppm, and spectrum f, with [Na] = 455 ppm, seem to be similar to the spectra of octagonal platelets and needle aggregates of WO₃, 1/3H₂O, respectively, reported in Fig. 5 of Ref. (4).

After subsequent heat treatments all the WO₃, $1/3H_2O$ samples with Na concentrations of 160 to 3400 ppm lost water and were transformed into the pseudomorphic metastable hexagonal WO₃ (Fig. 11), JCPDS 33-1387, at the same temperature as reported in Refs. (1 and 2).

DISCUSSION

The most characteristic feature of this study is the fact that we have not succeeded in the preparation of WO₃, $1/3H_2O$ with a sodium content less than 160 ppm. However it was possible to control and analyze the sodium content of the precursor H_2WO_4 , H_2O down to the level 20-30 ppm. Moreover, our impression is that sodium has an effective role either in controlling the reaction route of dehydration to the formation of WO₃, $1/3H_2O$, or in stabilizing the WO₃, $1/3H_2O$ phase.

Infrared and X-ray investigations indicate that the crystallographic structure of the WO₃, $1/3H_2O$ lattice (4) is not very sensitive to the presence of sodium in the range 160–3400 ppm. It is not clear at this point whether these limits can be considered exact values. Certainly, no variations in pressure, temperature, or processing time of the hydrothermal synthesis were made in this work.

The observation that the c parameter of the cell in-

FIG. 6. Scanning electron micrographs of the orthorhombic WO₃, 1/3H₂O, JCPDS 35-270 samples containing various amounts of sodium: A, 163; B, 204; C, 455; E, 740; D, 1053; and F, 3420 ppm.

FIG. 7. The mean particle size of WO₃, $1/3H_2O$ crystallites vs their sodium content; *l* is the mean particle length from Ref. (4).

creases (the 004 reflection shifts) with the incorporation of sodium suggests that the role of a privileged facet during growth cannot be excluded. There is some evidence to indicate that a high level of incorporated sodium begins to deteriorate the WO₃, $1/3H_2O$ lattice. The observed incorporation raises the question of stoichiometry. The present results of chemical analysis indicate values of x from 0.00084 to 0.01786, using the formulation $(Na_2O)_xWO_3$, $1/3H_2O$. The significance of these values can be further emphasised using the reverse formulation Na_2O , $(WO_3, 1/3H_2O)_x$ with values of x from 56 to 1184. This formulation can be compared with "tungsten phase C," Na_2O , $(WO_3, 1/2H_2O)_{8.40}$ (18), JCPDS 17-616. The sodium content in "WO₃, $1/3H_2O$ " is obviously much

FIG. 8. Infrared spectra: a, WO₃, H₂O, [Na] = 11 ppm, from China National Nonferrous Metals Import & Export Corporation; b, WO₃, H₂O, [Na] = 41 ppm, from the autoclave; c and d, samples from the autoclave, mixed phases of WO₃, H₂O and WO₃, 1/3H₂O, with [Na] = 46 and 54 ppm; e, f, g, h, i, j, and k, WO₃, 1/3H₂O samples from the autoclave, with [Na] = 163, 204, 455, 605, 740, 1053, and 3420 ppm.

FIG. 9. Infrared spectra: a, WO₃, H₂O, [Na] = 11 ppm, from China National Nonferrous Metals Import & Export Corporation; b, WO₃, H₂O, [Na] = 41 ppm, from the autoclave; c, mixed phases of WO₃, H₂O and WO₃, 1/3H₂O from the autoclave, [Na] = 54 ppm; d, e, f, g, h, i, and j, WO₃, 1/3H₂O samples from the autoclave, with [Na] = 163, 204, 455, 605, 740, 1053, and 3420 ppm.

smaller than in phase C, and little can be said about the way of incorporation—whether Na is adsorbed on certain facets or whether it occupies defect sites in the lattice. NMR studies (10) have shown that 3% of the protons in octagonal platelets of WO_3 , $1/3H_2O$ belong to OH groups, and it has been assumed that these OH groups are located on the surface of the crystallites. The range of sodium content of our WO_3 , $1/3H_2O$ samples is in agreement with the concentration of the OH groups determined in Ref. (10). This agreement seems to make the idea of locating sodium on crystal facets somewhat possible. On the other hand, however, the observed shift of the 004 reflections indicate sodium incorporation into the cell.

Interpreting our experimental results, we would stress that all the procedures were performed according to the detailed report in Ref. (4), therefore we have reason to suppose that samples of that study also contained a notnegligible level of sodium.

The observation of the sodium content (or contamination) of WO₃, $1/3H_2O$ samples discussed here can have other consequences. If sodium is present in the WO₃, $1/3H_2O$ phase, the dehydration product, h-WO₃, will contain sodium as well. This raises the question of the stoichiometry of the metastable h-WO₃. This very important question is being studied now and the results will be published later.

FIG. 10. Infrared spectra: a, WO₃, H₂O, [Na] = 11 ppm, from China National Nonferrous Metals Import & Export Corporation, b, WO₃, H₂O, [Na] = 41 ppm, from the autoclave; c, mixed phases of WO₃, H₂O and WO₃, 1/3H₂O from the autoclave, [Na] = 54 ppm; d, e, f, g, h, i, and j, WO₃, 1/3H₂O samples from the autoclave with [Na] = 163, 204, 455, 605, 740, 1053, and 3420 ppm.

SUMMARY AND CONCLUSION

Reproducing the preparation route of WO_3 , $1/3H_2O$ reported in Ref. (4), the same phase (within experimental

FIG. 11. SEM micrograph of the hexagonal WO₃ obtained by isotherm dehydration at 290°C of WO₃, $1/3H_2O$ with [Na] = 455 ppm.

error, with the same lattice parameters) of the same color and crystallite shape was grown. During subsequent heat treatments the samples lost water and were transformed into the pseudomorphic metastable hexagonal WO₃, as reported in Refs. (1 and 2). All WO₃, 1/3H₂O samples have been found to contain sodium (160–1100 ppm). Using precursors with a low (20–30 ppm) level of sodium instead of WO₃, 1/3H₂O, the formation of WO₃, H₂O has been observed. After a deliberate Na addition WO₃, 1/3H₂O was obtained again from the same precursor. X-ray powder diffraction and infrared absorption measurements have been used to confirm that sodium incorporates into the WO₃, 1/3H₂O phase, stabilizing it and changing its stoichiometry to Na₂O, (WO₃, 1/3H₂O)_x with values of x from 56 to 1184.

ACKNOWLEDGMENTS

We thank Professor L. Bartha for his support in this work, Dr. G. Gerey for his collaboration in the preparation of the samples, and Mr. A. Tóth for SEM photographs. We also thank Dr. P. Arató, Mr. F. Wéber, and Mr. S. Gurbán for helpful discussions.

REFERENCES

- 1. B. Gerand, G. Nowogrocki, J. Guenot, and M. Figlarz, J. Solid State Chem. 29, 429-434 (1979).
- M. Figlarz and B. Gerand, *in* "9th International Symposium on the Reactivity of Solids, Cracow, Poland," (K. Dyreh, J. Haber, and J. Nowotny, Eds.), pp. 887–891. Elsevier, Amsterdam, 1980.
- K. H. Cheng, A. J. Jacobson, and M. S. Whittingham, *Solid State Ionics* 5, 355–358, (1981).
- 4. B. Gerand, G. Nowogrocki, and M. Figlarz, J. Solid State Chem. 38, 312-320 (1981).
- 5. B. Vidick, J. Lemaitre, and B. Delmon, Acta Chim. Hung. 111, 449-463 (1982).
- M. Figlarz, B. Dumont, B. Gerand, and B. Beaudoin, J. Microsc. Spectrosc. Electron. 7, 371-386, (1982); M. Figlarz, Prog. Solid State Chem. 19, 1-46 (1989).
- B. Gerand and M. Figlarz, "Reduction of Hexagonal WO₃ by Hydrogen Spillover: Formation of New Hydrogen Hexagonal Tungsten Bronzes H_xWO₃ in Spillover of Adsorbed Species," (G. M. Pajonk, S. J. Teichner, and J. E. Germain, Eds.). Elsevier, Amsterdam, 1983.
- 8. S. Laurelle and M. Figlarz, J. Solid State Chem. 111, 172-179 (1994).
- J. C. Newton-Hoves and A. N. Cormack, J. Solid State Chem. 79, 12-18 (1989).
- C. Doremieux-Morin, L. G. de Menorval, and B. Gerand, J. Solid State Chem. 45, 193–199 (1982).
- 11. H. Zocher and K. Jacobson, Kolloidchem. Beih. 28,(6), 167 (1929).
- 12. G. M. Neumann, Talanta 18, 1047-1057 (1971).
- 13. Installed by L. Petrás and L. Nagy, unpublished.
- 14. K. Furusawa and S. Hachisu, Sci. Light (Tokyo) 15, 115-130 (1966).
- 15. A. B. Kiss, Acta Chim Acad. Sci. Hung. 75, 351-368 (1973).
- 16. A. B. Kiss, Acta Chim Acad. Sci. Hung. 84, 393-407 (1975).
- M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlarz, J. Solid State Chem. 67, 235-247 (1987).
- 18. M. L. Freedman and S. Leber, J. Less-Common Met. 7, 427-432 (1964).